Diffusive behaviors of circle-swimming motors.

نویسندگان

  • Nathan A Marine
  • Philip M Wheat
  • Jesse Ault
  • Jonathan D Posner
چکیده

Spherical catalytic micromotors fabricated as described in Wheat et al. [Langmuir 26, 13052 (2010)] show fuel concentration dependent translational and rotational velocity. The motors possess short-time and long-time diffusivities that scale with the translational and rotational velocity with respect to fuel concentration. The short-time diffusivities are two to three orders of magnitude larger than the diffusivity of a Brownian sphere of the same size, increase linearly with concentration, and scale as v(2)/2ω. The measured long-time diffusivities are five times lower than the short-time diffusivities, scale as v(2)/{2D(r)[1+(ω/D(r))(2)]}, and exhibit a maximum as a function of concentration. Maximums of effective diffusivity can be achieved when the rotational velocity has a higher order of dependence on the controlling parameter(s), for example fuel concentration, than the translational velocity. A maximum in diffusivity suggests that motors can be separated or concentrated using gradients in fuel concentration. The decrease of diffusivity with time suggests that motors will have a high collision probability in confined spaces and over short times; but will not disperse over relatively long distances and times. The combination of concentration dependent diffusive time scales and nonmonotonic diffusivity of circle-swimming motors suggests that we can expect complex particle responses in confined geometries and in spatially dependent fuel concentration gradients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli.

We describe the use of a computational model to study the effects of cellular architecture and macromolecular crowding on signal transduction in Escherichia coli chemotaxis. A newly developed program, Smoldyn, allows the movement and interaction of a large number of individual molecules in a structured environment to be simulated (S. S. Andrews and D. Bray, Phys. Biol., in press). With Smoldyn,...

متن کامل

A simple self-organized swimmer driven by molecular motors

We investigate a self-organized swimmer at low Reynolds numbers. The microscopic swimmer is composed of three spheres that are connected by two identical active linker arms. Each linker arm contains molecular motors and elastic elements and can oscillate spontaneously. We find that such a system immersed in a viscous fluid can self-organize into a state of directed swimming. The swimmer provide...

متن کامل

The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species.

The bacterial flagellar motor is an elaborate molecular machine that converts ion-motive force into mechanical force (rotation). One of its remarkable features is its swift switching of the rotational direction or speed upon binding of the response regulator phospho-CheY, which causes the changes in swimming that achieve chemotaxis. Vibrio alginolyticus has dual flagellar systems: the Na(+)-dri...

متن کامل

Opposite and Coordinated Rotation of Amphitrichous Flagella Governs Oriented Swimming and Reversals in a Magnetotactic Spirillum.

UNLABELLED Current knowledge regarding the mechanism that governs flagellar motor rotation in response to environmental stimuli stems mainly from the study of monotrichous and peritrichous bacteria. Little is known about how two polar flagella, one at each cell pole of the so-called amphitrichous bacterium, are coordinated to steer the swimming. Here we fluorescently labeled the flagella of Mag...

متن کامل

Determination of Gain and Phase Margins in Lur’e Nonlinear Systems using Extended Circle Criterion

Nonlinearity is one of the main behaviors of systems in the real world. Therefore, it seems necessary to introduce a method to determine the stability margin of these systems. Although the gain and phase margins are established criteria for the analysis of linear systems, finding a specific way to determine the true value of these margins in nonlinear systems in general is an ongoing research i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2013